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Abstract

Sign Language Translation (SLT) has evolved significantly,
moving from isolated recognition approaches to complex,
continuous gloss-free translation systems. This paper ex-
plores the impact of pose-based data preprocessing tech-
niques — normalization, interpolation, and augmentation
— on SLT performance. We employ a transformer-based ar-
chitecture, adapting a modified T5 encoder-decoder model
to process pose representations. Through extensive ablation
studies on YouTubeASL and How2Sign datasets, we ana-
lyze how different preprocessing strategies affect translation
accuracy. Our results demonstrate that appropriate nor-
malization, interpolation, and augmentation techniques can
significantly improve model robustness and generalization
abilities. Additionally, we provide a deep analysis of the
model’s attentions and reveal interesting behavior suggest-
ing that adding a dedicated register token can improve over-
all model performance. We publish our code on our GitHub
repository1, including the preprocessed YouTubeASL data.

1. Introduction

Sign language translation has witnessed remarkable
progress over the past few decades, transitioning from early
isolated sign language recognition systems to more complex
continuous recognition frameworks. Early methods largely
depended on gloss-based approaches—relying on interme-
diary linguistic annotations to bridge the visual and textual
modalities—while recent research has increasingly shifted
toward gloss-free techniques. These gloss-free methods
seek to directly map visual inputs into textual outputs, lever-
aging advances in multi-modal learning and large language
models to enhance translation accuracy.

1https://github.com/zeleznyt/T5_for_SLT

Despite these advancements, gloss-free systems still face
notable challenges. Variations in signer position, scale, and
background dynamics together with no direct alignment be-
tween the input and output languages contribute to the per-
formance gaps when compared to their gloss-based coun-
terparts. In response, our work systematically investigates a
series of data preprocessing techniques including keypoint
extraction, normalization, and augmentation aiming to mit-
igate the issues of spatial variation and improve the robust-
ness of the translation pipeline.

We present a comprehensive evaluation of these tech-
niques within a transformer-based framework, specifically
adapting a modified T5 encoder-decoder architecture for
the task of SLT. Extensive ablation studies are conducted
on challenging datasets such as YouTubeASL [35] and
How2Sign [10], revealing that a thoughtful combination
of normalization and augmentation strategies can substan-
tially enhance model performance. Our analysis not only
demonstrates improvements in translation accuracy but also
provides valuable insights into the interplay between visual
preprocessing and model architecture.

Ultimately, this work contributes to the broader goal of
developing more accurate and efficient SLT systems, paving
the way for enhanced accessibility and communication be-
tween the Deaf and hearing communities.

2. Related Work
Sign Language Translation has progressed through dynamic
evolution over the years, beginning with work on Iso-
lated Sign Language Recognition (ISLR) [15, 23] and pro-
gressing more towards Continuous Sign Language Recog-
nition (CSLR) [6, 14], with early efforts primarily focused
on isolated sign language (SL) datasets [9, 22] and more
recent studies advancing with continuous data that cap-
ture the dynamic and nature of sign language communica-
tion [4, 10, 32, 34, 35]. Building on this, SLT has devel-

https://github.com/zeleznyt/T5_for_SLT


opped in two main approaches: gloss-based and gloss-free
methods. Gloss-based approaches utilize structured linguis-
tic representations of signs to learn the alignment between
sign language (glosses) and text [2, 6, 7, 41, 47], while
gloss-free methods directly map visual features to text, aim-
ing to bypass the need for intermediate linguistic annota-
tions (glosses) [5, 13, 16, 27, 40, 45]. Gloss-free methods
often introduce innovative approaches as for example uti-
lization of self-supervised fine-tuning [17], sign pose quan-
tization [18] or pseudo-translation tasks [44]. Although
gloss-based techniques benefit from the transparent supervi-
sion, gloss-free approaches have become increasingly pop-
ular thanks to advancements in multi-modal learning, with
the integration of Large Language Models (LLMs) enhanc-
ing the translation accuracy by utilizing better pretrained
textual representations [24, 31, 36].

Thanks to this increasing popularity, we have seen in-
novations in gloss-free approaches such as Sign2GPT [36]
using large-scale pretrained visual and language models,
GFSLT-VLP [45] integrating contrastive language–image
pretraining and masked self-supervised learning. Innova-
tions went all the way into the topic of diffusion models
with DiffSLT [28], a diffusion-based generative approach,
transforming random noise into the target latent represen-
tation. Furthermore, we also saw SignLLM [11] applying
vector-quantization to convert sign videos into discrete to-
kens, and SignCL [39] introducing an sign contrastive loss
to reduce representation density in dense visual sequences.
Moreover, there were innovations such as GASLT [40],
which incorporates gloss-attention mechanisms, and CS-
GCR [43], which utilizes custom word verification. De-
spite these developments and the overall potential, gloss-
free SLT methods continue to face a performance gap when
compared to their gloss-based alternatives.

Transformer-based models, such as the T5 [30], have
shown great multilingual capability. Recent literature have
explored T5’s flexibility in handling multimodal inputs [12,
38, 42], which showed its potential to address the transla-
tion of embedded visual sign language input into text. Ad-
ditionally, studies using encoder-decoder models that in-
tegrate pretrained visual encoders with advanced text de-
coders — like GFSLT-VLP [45] based on mBART [25] —
indicate that utilizing strong language priors without relying
on gloss annotations is an interesting approach to further in-
vestigate. Our work uses T5 as model for SL translation and
conducts extensive ablation studies which cover areas such
as pose augmentation and sign space pose normalization.
Recent research shows that while increasing model scale
tends to boost performance, using well-curated data and a
thoughtfully designed approach is equally important [20].

There are few recent papers related to these topics that
explore the utilization of unique pose normalization aim-
ing for encoder-only transformer in SL modeling [37], face

swapping, and other image (mostly affine) augmentations of
SL data which report positive effects during training [29].
Two studies dive into an attention analysis and attention-
based sign language recognition built upon decoupled graph
and temporal self-attention [1, 33]. These studies show-
case some interesting observations, for example, that trans-
former models for SLT learn to attend to sequential clusters
rather than individual frames [1], which will be referred to
more in Section 5.3.

3. Methods
In this section, we describe different parts of our processing
parts with emphasis on the parts relevant to the following
ablation studies.

3.1. Data preprocessing
Data preprocessing is important, especially when work-
ing with uncurated datasets. In our experiments, we use
YouTubeASL [35] and How2Sign [10]. YouTubeASL con-
sists of videos captured in the wild and is uncurated, mean-
ing signers appear in various positions, sizes, and reso-
lutions, sometimes alongside other people. In contrast,
How2Sign is recorded in a controlled setting with a single
signer positioned in front of the camera. However, signers
can still shift across videos or appear at different distances.

To address these variations, we first extract keypoints
and then evaluate multiple normalization strategies. In both
cases, we first split videos into clips based on the captions
and work only with the clips.

3.1.1. Keypoint Extraction
We use a two-stage approach for keypoint detection: first,
we detect a person in the frame, and then we predict key-
points within the detected area. Detecting the person first
is crucial, as the signer may occupy only a small portion of
the screen (e.g., a news interpreter).

Instead of using a standard object detection model for
person detection, we employ a lightweight keypoint detec-
tion model. We then define a bounding box around the
signer based on the signing space. Signing space is a con-
cept from linguistics, which we define as a rectangle cen-
tered between the shoulders, with a width and height four
times the shoulder distance. All signing should happen in
this area, we make the box slightly bigger than is necessary
to ensure that all keypoints are in the box. This guarantees
that the signer remains centered, occupies the majority of
the frame, and maintains a consistent size across the clip.

We exclude clips containing multiple people, as tracking
all individuals across frames and identifying the signer in-
troduces potential errors. To simplify processing, we omit
such clips.

Our keypoint extraction pipeline consists of the fol-
lowing steps: 1. We start by detecting pose using



YOLOv8-nano [19], if the clip contains multiple people we
discard it. 2. Based on the detected poses we create the
signing space. 3. Next, we spatially crop frames based on
the sign space, this ensures that all excessive background
is removed and frames are roughly centered on the signer.
4. Lastly, we use MediaPipe [26] to predict body pose, hand
pose, and face mesh in the spatial cropped clip.

We do not use all keypoints from MediaPipe. For the
body pose, we omit leg keypoints, and for the face, we se-
lect only a small subset representing prominent facial fea-
tures. In total, we extract 104 keypoints, this includes 21
keypoints for each hand, 25 for the body pose, and 37 for
the face 2. We use the x and y coordinates generated by
MediaPipe, resulting in a final 208-dimensional vector per
frame.

3.1.2. Pose Normalization
The main step in preprocessing is keypoint normalization,
which aims to make keypoints invariant to translation and
scale. Although we centered frames on the signer during
keypoint extraction, some shifts or size differences may
still occur. We evaluate three normalization strategies: two
based on the YouTubeASL paper and one based on our sign-
ing space approach based on the work [2].

In the YouTubeASL paper, normalization is applied by
scaling keypoints to fit within a unit bounding box across
the entire duration of the clip. We refer to this method
as yaslc. This approach ensures that the signer remains of
consistent size across all frames but does not account for the
changing position within the frame.

We also evaluate a frame-wise normalization strategy,
where keypoints are normalized independently in each
frame to fit within a unit bounding box. While this method
eliminates shifts in the frame and distributes keypoints more
evenly within the bounding box, it can cause the signer’s
size to fluctuate across frames. We refer to this normaliza-
tion as yaslf . Examples of yaslc and yaslf normalized key-
points are shown in Figure 1a and Figure 1b, respectively.

The third normalization method (denoted as SignSpace)
we evaluate is based on the signing space we defined in Sub-
subsection 3.1.1. We normalize body pose keypoints by cre-
ating a bounding box centered between the shoulders, with
its width and height set to three times the distance between
the shoulders. Keypoints within the signing space are then
scaled to be in the range ⟨−1, 1⟩. After scaling, keypoints
are shifted so that the center of the signing space is at posi-
tion [0, 0]. This normalization is applied frame by frame and
we consider it as global, as it preserves the relation between
the individual body parts.

Global normalization is applied only to body pose key-
points. For hands and face, we use local normalization,
meaning we normalize each hand and face separately by

2Same as in YouTubeASL paper [35].

scaling them to range ⟨−1, 1⟩ while maintaining their as-
pect ratio. Additionally, we add a 10% border from each
side around them to suppress the effect of inaccuracies in
the pose estimation model. Local normalization ensures
a focused view of individual parts, independent of their
absolute position. The absolute position and relationship
between different body parts are instead captured through
global body pose normalization. Example of keypoints nor-
malized by this method is depicted in Figure 1c.
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Figure 1. Examples of evaluated normalization methods. We com-
pare multiple approaches: (a) shows the normalization proposed in
the YouTubeASL paper, where poses are scaled to fit within a unit
box across the entire clip. (b) shows an alternative method where
normalization is applied separately to each frame. Finally, (c) il-
lustrates our approach, which normalizes the body pose globally
using signing space while applying local normalization separately
to the hands and face.

3.1.3. Missing Values
One important issue that is necessary to handle during the
normalization are miss-detections that result in missing val-
ues. Some of the keypoints may not be detected, or the
signer may use only one hand, with the other hand out of
the frame. In the YouTubeASL paper, missing values are



handled by replacing them with a large negative value. We
adopt this approach, but we also propose to linearly inter-
polate keypoints if the frame gap between the detected key-
points is short.

In our case, the gap is two frames or shorter in almost
60% of cases, and three frames or less in almost 75% of
cases. We assume that the change between close frames is
small, which means that interpolated keypoints should be
close enough to retain their semantic meaning. We com-
pare this to the approach where all the missing values are
replaced with constant values.

3.1.4. Augmentations

Augmentations are commonly used to enrich datasets.
However, in the SLT task, it is essential to ensure that the
augmentation process does not change the semantic mean-
ing of the pose. We evaluated three augmentation strategies,
each varying the probability and intensity of augmentations
by scaling the default strategy values. The default strategy
is heavy, the second is medium (scaled by 0.75), and the last
is light (scaled by 0.5).

We use mainly geometric augmentations, which in-
clude: rotation, shear, perspective, arm rotation, and addi-
tive Gaussian noise. The same augmentations are applied to
all frames in the clip.

Arm rotation augmentation rotates all arm and hand key-
points around a shoulder, elbow, or wrist keypoint. This
augmentation can be chained, which means that the entire
arm can first rotate around the shoulder, then again around
the elbow or wrist in successive transformations. In Fig-
ure 2, there are examples of some of the augmentations.
Here, each augmentation is applied individually, but during
the training, multiple augmentations can be applied to one
frame.

3.2. Model

Our model setup follows the original baseline method of the
YouTubeASL paper. We use a modified version of T5 [30]
encoder-decoder-based transformer. In order to process the
input of the 208-dimensional keypoint features, we employ
a custom linear layer at the transformer’s encoder input in-
stead of traditional tokenized text. Following standard em-
bedding layer practices, our custom layer does not include
an additive bias. Besides this change, our model follows
a standard T5v1.13 architecture. The T5 weights are ini-
tialized from T5X, while the custom layer uses the Xavier
initialization.

3https://github.com/google- research/text- to-
text - transfer - transformer / blob / main / released _
checkpoints.md

(a) Rotate (b) Shear

(c) Perspective (d) Arm rotation

Figure 2. Examples of individual augmentations. We show only
body pose keypoints, during training all keypoints are augmented.
To better illustrate their effects, we applied the same geometric
augmentation (except for arm rotation) to the frame.

4. Experiments and Quantitative Results
In this section, we first describe our experimental setup.
Then, we report and analyze the results of three different
ablation studies.

4.1. Experimental Setup
In our experiments, we finetune the T5-based model on
the YouTubeASL dataset using various data preprocessing
techniques to evaluate their impact on overall model perfor-
mance. For YouTubeASL we use a custom 90:10 train-val
split, while for the How2Sign dataset we use the default
split provided by the dataset. All our experiments are as-
sessed based on the BLEU scores computed using sacrebleu
v2.4.3 on the How2Sign dataset, a standard benchmark for
gloss-free sign language translation systems. The perfor-
mance on the How2Sign dataset is measured without any
additional finetuning on this dataset. If not stated otherwise,
the model is trained for a total of 200,000 iterations using
an effective batch size of 256 and a constant learning rate
of 0.0004. In the initial experiments, we observe high train-
ing volatility. To reduce this variability between training
runs, we employ a warm-up phase for the first 5,000 train-
ing steps. Additionally, to ensure a fair comparison between
different training setups, we run each experiment with three
different seeds and report the best run. The YouTubeASL
paper doesn’t provide the exact value to use in case of miss-
ing keypoint values. Inspired by their mention of a ”large

https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md
https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md
https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md


Normalization B-1 B-2 B-3 B-4
none 13.62 3.67 1.54 0.73
yaslc 13.00 3.90 1.59 0.66
yaslf 14.67 4.78 2.19 1.13
SignSpace 17.47 7.19 3.79 2.17

Table 1. Comparison of four different types of normalization
techniques. Performance is measured by BLEU scores on the
How2Sign dataset.

Interpolation B-1 B-2 B-3 B-4
none 17.47 7.19 3.79 2.17
≤2 frames 16.91 7.35 4.06 2.43
≤3 frames 17.16 7.40 4.01 2.33

Table 2. Comparison of three different interpolation settings. Per-
formance is measured by BLEU scores on the How2Sign dataset.

negative number,” we use a value -10 in our experiments.
The training was conducted using 4 AMD MI250x GPU
modules, split into 8 GCD for each experiment.

It should be noted that the trained models after 200,000
iterations are not ”fully trained”, and their performance
would benefit from additional training; there are two rea-
sons for this shorter training protocol. Firstly and more im-
portantly, we believe the comparative performance after this
shorter training protocol reflects the performance compari-
son of fully-trained models. The second reason is based on
the restriction of computational resources available.

4.2. Normalization
In the first set of experiments, we analyze four different
types of data normalization. Results can be seen in Table 1.

All the proposed normalization results in better perfor-
mance when compared to the training without any normal-
ization. Interestingly, the original yaslc performs worse
than our modification yaslf . We argue that the speaker size
change in the yaslf normalization is less distracting for the
model than the shift in the speaker position in yaslc. The
SignSpace normalization outperforms all other normaliza-
tion approaches by a large margin. Based on this result, all
the following experiments use the SignSpace normalization.

4.3. Interpolation
In the next series of experiments, we analyze the effect of
using linear interpolation of the missing keypoints. We ex-
periment with a total of 3 different settings: interpolate all
gaps with size 2 or smaller, with gaps 3 or smaller, or don’t
use interpolation at all, in which case all missing values are
replaced with the default value equal to −10. The results
are in Table 2.

Both interpolation approaches result in slightly better re-

Augmentation B-1 B-2 B-3 B-4
none 17.47 7.19 3.79 2.17
rotate 15.30 5.73 2.88 1.61
shear 17.19 7.25 3.86 2.2
perspective 16.07 6.83 3.70 2.17
rotate shoulder 16.39 6.97 3.75 2.17
rotate elbow 17.48 7.38 3.89 2.28
rotate wrist 16.05 6.84 3.72 2.20
noise 17.45 7.47 4.07 2.41

Table 3. Impact of individual augmentations. Performance is mea-
sured by BLEU scores on the How2Sign dataset.

Augmentations B-1 B-2 B-3 B-4
none 17.47 7.19 3.79 2.17
light 15.76 6.23 3.12 1.71
medium 17.27 7.51 4.12 2.46
heavy 16.58 7.10 3.85 2.29

Table 4. Impact of different augmentation protocols. Performance
is measured by BLEU scores on the How2Sign dataset.

sults than runs without any interpolation. We hypothesize
that the interpolation makes data easier to interpret and ad-
ditionally gives the model more frames where relevant in-
formation is stored.

4.4. Augmentations
We investigate the model’s performance using different
types of augmentations. First, we assess the contributions of
individual augmentations by applying them with a medium-
scale value and evaluating the finetuned models. Based on
these individual performances, we select those augmenta-
tions that positively impact performance to design a final
augmentation protocol with three different scales, as de-
scribed in Section 3.1.4.

According to Table 3, the overall performance (majority
of the BLEU scores) was improved by the shear, rotate el-
bow, and noise augmentations. In our final augmentation
protocols, we used only these three types of augmentation.
We tried to analyze the other augmentations and their effect
on the inputs. The decrease in performance for the rotate
augmentation is probably caused by the fact that rotation is
not very common in real-world data examples. Therefore, it
does not contribute to the necessary generalization and only
makes the training data more difficult. The same is true for
the perspective augmentation. Additionally, we argue that
augmentation of the shoulder and wrist rotation can be too
heavy in the sense that they can easily change the meaning
of signs.

The final results of our three augmentation protocols are
presented in Table 4.



Based on the results, it seems that the medium augmen-
tation protocol slightly improves the final results. The other
two protocols are comparable with the setup without any
augmentations. There are two main possible reasons why
this phenomenon occurred. First, our training protocol is
too short. Based on the analysis of training curves, we do
not see any saturation in the results. The lack of saturation,
in conjunction with the fact that training with augmenta-
tions is generally slower due to the increased complexity
of the training set, could result in worse performance after
a certain number of iterations. Second, the YouTubeASL
dataset is a very complex dataset with a large number of
data samples. Therefore, the proposed augmentation may
not bring any helpful information into the training. We want
to analyze this phenomenon more in our future research.

5. Qualitative Results
In this section we provide qualitative results in form of
self- and cross-attention analysis of our T5v1.1-base model.
We also analyze translations that are learned on the weakly
aligned data from the YouTubeASL dataset.

5.1. Encoder Self-Attention
To analyze the patterns in the encoder attention mechanism
during T5 inference, a visualization averaged over all en-
coder layers (Figure 3) shows that each of the 12 atten-
tion heads specializes in identifying a distinct causal pattern
within the input signal. Furthermore, each head focuses on
a different temporal context surrounding the current frame.
These findings stand true for all analyzed data hinting at a
learned specialization of each head. More examples with all
attention heads visualized can be found in the supplemen-
tary material.

5.2. Cross-Attention Behavior
In the cross-attention matrices during inference, we demon-
strate a clear causal relationship between encoder and de-
coder representations. The attention progresses sequentially
over time, consistent with the linear advancement of both
textual and ASL signals, resulting in an attention distribu-
tion that disperses over segmented words, as we present in
a selected cross-attention matrix in Figure 4. The other lay-
ers’ visualization can be found in supplementary material.

Next to this, we have revealed another kind of trend in
the cross-attention data. In majority of the analyzed matri-
ces, averaged across heads and layers, there appears to be a
spike in intensity in the last few frames towards the end of
the clip. Also, in many clips there is an attention spike in
several other places across the clip. This behavior suggests
that the decoder is placing greater attention on a specific
subset of input frames when generating each decoded to-
ken. This can be observed in Figure 5a. When the spike
appears during the signing we found out that it is usually

Head 1 Head 5

Head 8 Head 11

Ref: Hello, I'm Rogan and welcome to the first video of 2020.
Pred: Hello, I'm Rogan and welcome to the first video of 2020.

Figure 3. Encoder self-attention averaged over layers per attention
head. We observe that while Head 5 strictly focuses on the current
token (visible as attention along the diagonal), Heads 1 and 8 spe-
cialize in attending to past and future contexts, respectively. Head
11, on the other hand, exhibits a more complex pattern, attending
broadly to the surrounding context beyond the immediate diago-
nal.
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Ref: Today, I'll be showing you various signs related to the queer community.

Pred: Now I will tell you different signs related to the queer community.

Figure 4. Cross-Attention averaged over all attention heads in a
layer, showing temporal progression of tokens attending to frames.

located around a key-sign of the utterance where no transi-
tion between signs occurs. This is an expected behavior in
the task of SL translation. However, this does not explain
the consistent behavior of the high peaks at the end of the
utterance observed in almost every clip.
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Ref: I will only show you the sign, no additional explanations.

Pred: I will tell you a single sign, no spoilers.
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Figure 5. Histogram (a) visualizes Cross-Attention Distribution
over all attention heads and layers, with an intensity spike in
frames 46–48, highlighted in green. In (b), the corresponding
video frames show the keyframe for the word ”SIGN” matches
the time of the cross-attention spike.

Upon further examination, we found clips that had high
cross-attendances to long segments in various parts of the
input, Figure 6a and more in supplementary. When we in-
vestigated these clips, we were surprised that the decoder
was attending the part of the clip where no signing was
performed. This led us to a hypothesis that the T5 model
is using these non-informative segments to encode crucial
information about the translation. This behavior has been
already observed in previous works [3, 8] where they use
register buffers as additional tokens to encode such infor-
mation. In the work [8] the analysis is performed over im-
ages where the model is usually encoding important infor-
mation in patches belonging to the background. This would
be analogous to our observations and it might be helpful
to use the same principle of adding register buffers to our
translation model for better interpretability and generaliza-
tion.

5.3. Integrated Gradients Analysis

Another standard approach to analyzing the model’s behav-
iors is an analysis of integrated gradients. In this paper, we
utilized Captum library [21] to perform gradient analysis
and assign attribution scores to input features. To be more
specific, we used the Integrated Gradients tool, which ac-
cumulates gradients along a linear path from a baseline (in
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Figure 6. Histogram (a) visualizes Cross-Attention Distribution
over all attention heads and layers, with a long intensity spike se-
quence in frames 66-95, highlighted in red. Video frames (b) show
this is a sequence of still, non-informative frames of a transition.

our case, an array of zeros) to the actual input, assigning
an attribution score to each frame for the final prediction.
These scores reveal which frames positively or negatively
influence the model’s translations, among other things also
supporting our observations in Sections 5.1 and 5.2. We
used well-translated test samples only to clearly correlate
positive attributions with high-quality translations. Positive
attributions, therefore, indicate that certain frames aid in ac-
curate translations, while negative scores may reflect noise
or temporal misalignment; examples are shown below.

• Reference: ”Today, I’ll be showing you various signs
related to the queer community.”

• Prediction: ”Now, I will tell you different signs related
to the queer community.”

and the integrated gradients per output token per input
frame are shown in Figure 7.

We observe behavior that is challenging to fully analyze,
yet it is noteworthy that it has not been observed for the
base (non-finetuned) model. A diagonal trend in integrated
gradients is starting to occur. We set an experimental mini-
mal threshold of 0.3 for visualization, see lower Figure in 7.
Two clusters emerge for the tokens “signs” (around index
47) and “que” (around index 70). Punctuation marks (dots
and commas) show near-zero contributions, suggesting that
while the model retains T5’s textual and textual structure
understanding, these punctuation marks are not semanti-
cally encoded in the input frames. This indicates that frame
importance aligns with the temporal occurrence of signing,
whereas off-diagonal patches may reflect contextual influ-
ences or incomplete model adaptation.



Figure 7. Attribution of Pose Frames to Generated Tokens (top):
our finetuned T5 model for SLT translating a chosen phrase, (bot-
tom): the identic model and phrase with minimal threshold of 0.3
to better showcase the diagonal trend.

Figure 8. Attribution of Pose Frames to Generated Tokens - fil-
tered average over multiple data samples

As a following step in the gradients analysis, we per-
formed integrated gradients average over multiple relatively
better translated data samples. These were chosen with the
rule of a minimal BLEU-1 translation score of 10. In Fig-
ure 8 we observe not just a clear diagonal trend with some
integrated gradient clustering tendencies (that aligns with
the observation from a SignAttention study [1]), but also at-
tributions of multiple last frames to some of the predicted
token positions as already discussed in Section 5.2 and also
seen from a single data sample analysis, Figure 7.

5.4. Analysis of Generalization Capabilities
In some cases we have observed that the predicted trans-
lations have surprisingly surpassed the reference ones. As
YouTubeASL is a weakly-aligned dataset, not all transla-
tion labels (taken from video captions) are always correct.
For example, the model correctly recognized and translated
fingerspelling (Figure 9a) and the signs for numerals (Fig-
ure 9b), which were labeled incorrectly and not even present
in the reference translation. The reference pushes the gra-
dients in a wrong direction while the model is being opti-
mized. It might be helpful to automatically re-label some
dataset samples using machine translated pseudo-labels.
Similar ideas were presented in many fields, for SLT no-
tably in [46]. A mechanism that would be able to detect rel-

evant samples and decide which pseudo-labels to use would
need to be implemented and will be the subject of our future
work.

Frame 94/182 Frame 98/182 Frame 102/182 Frame 106/182 Frame 110/182

Frame 114/182 Frame 118/182 Frame 122/182 Frame 126/182 Frame 130/182

Ref: You can abbreviate it to NB, but you must have spelled it out first, then you can do NB.
Pred: It can be abbreviated N-B, but it must be fingerspelled NB-I-N-A-R-Y and then fingerspelled.

(a)

Frame 43/83 Frame 46/83 Frame 49/83 Frame 52/83 Frame 55/83

Ref: to be tempted by the devil.
Pred: So, at the same time, 40 days!

(b)

Figure 9. Example video frame sequences where the model has
overcome wrong labels and correctly recognized (a) fingerspelling
and (b) numerals.

6. Conclusion
This study systematically explored the impact of pose-
based preprocessing techniques on Sign Language Trans-
lation while using a T5-based model. In extensive abla-
tion studies, we demonstrated the importance of normal-
ization, interpolation, and augmentation techniques. These
techniques can significantly impact model robustness, mit-
igating signer variability and spatial inconsistencies. The
ablation studies highlight the effectiveness of normaliza-
tion based on signing space, interpolation of missing key-
points, and suitable augmentation protocol. Moreover, at-
tention analysis revealed valuable insights into model be-
havior, suggesting that register tokens could further enhance
SLT performance.

In our future work, we would like to focus on incorpo-
rating register tokens and evaluating their influence on SLT
accuracy. Furthermore, we would like to explore the possi-
bility of using appearance-based features, such as MAE or
DINO features, as additional input into the model.
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cundo Manuel Quiroga, Franco Ronchetti, and Enzo Fer-
rante. Signattention: On the interpretability of trans-
former models for sign language translation. arXiv preprint
arXiv:2410.14506, 2024. 2, 8
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